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Abstract

This paper proposes a policy-oriented framework to evaluate agricultural sustainability and
productivity within agri-food supply chains (AFSCs), focusing on the Tunisian context. The
Analytic Hierarchy Process (AHP) was applied to identify the most appropriate Total Factor
Productivity (TFP) methods, based on criteria derived from expert interviews and literature
review. Three approaches, the Solow Residual, Tornqvist-Theil, and Divisia indices, were
assessed. The Divisia (AHP weight = 0.918) and Tornqvist-Theil (AHP weight = 0.547)
indices achieved the highest rankings, reflecting their suitability for multi-output systems
and robust productivity decomposition. Sustainability-related Key Performance Indica-
tors (KPIs) were categorized as inputs and outputs and monetized using shadow prices
sourced from academic, institutional, and field data. Applied to 2015-2020 data, overall
TFP declined by 59.5%, mainly due to reduced resource-use efficiency, declining agricul-
tural value added, and increasing input costs. Unlike prior studies focused on farm-level
productivity, this framework integrates TFP with a multi-criteria sustainability assessment
to enhance evidence-based policymaking. The results demonstrate that methodological
choices substantially shape sustainability conclusions and highlight the added value of
price-aware, multi-output indices for complex agricultural systems. Overall, the proposed
AHP-TFP approach provides a transparent, adaptable, and policy-relevant tool for evaluat-
ing sustainable productivity in the agri-food sector.

Keywords: total factor productivity; sustainable agriculture; analytical hierarchy process;
shadow pricing; key performance indicators; evidence-based policymaking

1. Introduction

Policymakers and other decision-makers in agri-food supply chains (AFSCs) play
a key role in advancing sustainable strategies, particularly in regions facing significant
social, economic, and environmental constraints [1]. Sustainability assessment must shift
from traditional economic indicators to a multidimensional perspective that integrates
environmental, social, and governance dimensions, as climate change, resource depletion,
and socioeconomic volatility increase AFSC vulnerability [2]. Developing empirically
based frameworks to assess the actual sustainability performance of policy interventions
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across diverse capitals, while accounting for institutional capacity and data limitations,
remains challenging [3]. Despite numerous studies on TFP at macro and farm levels, few
have explicitly addressed sustainability assessment at the institutional level in Tunisia,
considering data limitations and recent policy reforms.

In this regard, total factor productivity (TFP), which calculates the ratio of total outputs
to a bundle of inputs, is widely recognized as an index of resource-use efficiency [4,5].
Although TFP has traditionally been employed to assess technical or economic perfor-
mance, recent studies are increasingly exploring it as a composite sustainability metric that
takes into account input substitution, technological advancement, and structural changes
influenced by public policies [6,7]. TFP provides a comprehensive depiction of system
efficiency, which is suitable for evaluating long-term effects across environmental, social,
and economic dimensions, in contrast to single-factor productivity measures.

A thorough methodological analysis is necessary to evaluate AFSC policymakers’
sustainability performance. Although TFP is commonly used in agricultural economics, its
potential for assessing sustainability, especially at the level of institutions, remains largely
unexplored. Several approaches exist to measure TFP, each with its own strengths and
limitations, and they are generally grouped into growth accounting, frontier-based, and
index-based methods. Most research to date has focused on macro levels, such as national,
regional, or farm-level analyses. For example, Afzal et al. [8] applied a growth accounting
framework to study long-term productivity at the national level in Pakistan, while [9]
examined technical change and efficiency across regional crop systems. Liu et al. [10] and
Wang et al. [11] used frontier-based techniques, including data envelopment analysis (DEA),
slack-based measures (SBMs), and Malmquist decomposition, to capture scale efficiency
and innovation in Chinese agricultural regions. While these methods provide valuable
insights for broad benchmarking, they are less suited for assessing the specific contributions
of institutional actors responsible for designing and implementing sustainability-oriented
policies. While previous research has largely focused on Asian contexts, the applicability
of these methods to Tunisia’s agricultural policies and institutional frameworks remains
largely unexplored.

Frontier methods such as DEA, SBM, and Malmquist indices are widely employed
to evaluate green or sustainable productivity [11,12]. They are robust tools for measur-
ing relative efficiency and managing multiple inputs and outputs [13], particularly when
price data are scarce or unreliable. However, their effectiveness diminishes for strategic
policy evaluations that require dynamic decomposition of productivity changes over time,
especially when actor-specific or price-based metrics are needed [14], and they face limi-
tations in capturing institutional-level impacts and data-scarce environments. Although
global studies [15,16] track productivity growth using market-based price weights, these
approaches remain rarely applied in sustainability assessments at the institutional level.
Some sectoral studies [17] employed Tornqvist-Theil indices to examine input-output
dynamics, and a few regional studies [18] incorporated undesirable outputs to account
for environmental concerns. These methods, while effective for benchmarking and cross-
sectional comparisons, often lack direct linkage with the institutional constraints, data
limitations, and policy priorities that shape real-world agricultural decision-making, partic-
ularly in developing regions. Despite these efforts, comprehensive evaluations integrating
economic, environmental, and social dimensions with price-based productivity indices are
still lacking.

This study seeks to answer the following research question: How can TFP methods be
adapted and applied to assess the sustainability performance of institutional policymaking
in Tunisia’s agri-food sector, considering data limitations and policy priorities?
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The Tunisian context is characterized by ongoing agricultural policy reforms, limited
availability of high-quality data, and institutional constraints, highlighting the need for
regionally grounded sustainability assessment frameworks.

To fill this gap, this paper proposes an adapted framework for institutional policymaking
in Tunisia, which applies carefully selected TFP methods to evaluate the sustainability perfor-
mance of a policymaking institution within AFSC. Rather than introducing a completely new
methodology, the study contextualizes and operationalizes existing approaches to enhance
their relevance and applicability for decision-makers in data-constrained agricultural insti-
tutions. Given the diversity of TFP approaches and the complexity of sustainability issues,
decision-support methods such as multi-criteria decision-making (MCDM), with particular
attention to the Analytic Hierarchy Process (AHP) [19,20], provide a structured means of
ranking alternatives by combining expert insights with quantitative evaluation [21].

Unlike previous studies that have mainly focused on farm-level or macroeconomic
TFP estimation, this research extends the use of productivity indices to an institutional poli-
cymaking context, where decisions directly influence resource allocation and sustainability
outcomes. The contribution of this study lies not in proposing a fully new method but in
demonstrating how an integrated AHP-TFP framework can be tailored to institutional
and policy needs, providing a practical and regionally grounded application of existing
productivity theories. The integration of the AHP method allows for the systematic selec-
tion of the most suitable TFP approach based on expert criteria, while the incorporation
of multi-capital key performance indicators (economic, environmental, and social) into a
unified, monetized productivity framework strengthens its operational value for policy
design. This hybrid AHP-TFP structure not only bridges methodological and contextual
gaps in the existing literature but also enhances the transparency and reproducibility of
sustainability assessment for decision-makers in agri-food governance.

This paper aims to design a decision-support framework for selecting and applying
appropriate TFP methods to assess the sustainability-related performance of a policymaking
institution in Tunisia’s agri-food sector. The study pursues two main objectives:

(i) Identify and prioritize the most suitable TFP methods using AHP;
(i) Empirically apply the top-ranked TFP methods to a real-world policymaking case in
Tunisia, providing insights into performance gaps and areas for improvement.

The paper is structured as follows: Section 2 outlines the TFP methods, selection
criteria, and the implementation of AHP. Section 3 describes the case study and the data
employed. Section 4 presents the empirical results, including the AHP ranking, the sus-
tainability assessment, and the sensitivity analysis. Section 5 discusses the main findings,
emphasizing their implications, validity, and limitations. Finally, Section 6 concludes the
study and highlights avenues for future research.

2. Materials and Methods

This section aims to evaluate both the sustainability and performance of policymakers’
activities using the TFP index deemed most appropriate via the AHP. To achieve this, a
three-phase approach has been developed, as illustrated in Figure 1.

2.1. Selection Criteria

In Phase 1, based on interviews with AFSC policymakers and a comprehensive review
of comparative studies on TFP approaches [5,16,22,23], two main criteria were defined, each
encompassing relevant sub-criteria aimed at capturing the methodological, contextual, and
empirical dimensions that determine a method’s suitability. Insights from semi-structured
interviews with AFSC policymakers directly informed the choice of criteria and sub-criteria.
For example, policymakers emphasized the need for results to be clear and interpretable,
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which motivated the inclusion of the “Communication” sub-criterion within C1. Similarly,
concerns regarding data representativeness and reliability highlighted the importance of
the sub-criteria under C2, such as “number of units analyzed” and “nature of the data”.
This direct linkage between interview findings and criterion selection ensures that the AHP
framework reflects both methodological rigor and the practical priorities of policymakers.
These criteria and sub-criteria are summarized in Table 1 and serve as the foundation for
Phase 2 of the methodology. As far as we are aware, this study is the first to develop a
structured set of criteria and sub-criteria for selecting a TFP index using AHP. The selection
process was guided by a systematic literature review and supplemented by consultations
with AFSC policymakers, ensuring that the factors considered are both relevant to the
research context and effective in identifying the most appropriate and pertinent methods.

Phase 1: Selection criteria and preselection of alternatives

Literature review of comparative studies regarding TFP methods
Interviews with the AFSC policymakers

|

Phase 2: Selection of TFP method(s) based on AHP

1. Construct decision hierarchy

2. Create a pairwise comparison matrix using Saaty’s scale
3. Calculate the weight of each criterion and subcriterion.

4. Consistency check

5. Aggregate scores and rank alternatives

|

Phase 3: Computation of selected TFP methods

- Apply the top-ranked TFP methods to case study data
- Use relevant computational formulas
- Generate TFP values over time, disaggregated by unit

}

Results and discussion, sustainability insights, and policy
recommendations

Figure 1. Overview of the methodological framework.

Table 1. Criteria and sub-criteria established for selecting TFP methods.

Criteria

Sub-Criteria Explanation and Justification

C1: Specificities and objectives of
the analysis

Assesses whether the method’s complexity affects the clarity
and interpretability of results. When simple and intuitive
C1.1 Communication outputs are required (e.g., summary indices understandable by
decision-makers), preference is given to methods offering
transparent and communicable results [24].

Evaluates the ability to incorporate multiple outputs (e.g.,
socio-environmental variables) relevant to sustainability

C2: Data availability and quality

C1.2 clt\)/[r:lslig-eorl;?ofs assessments. Approaches capable of addressing such
multidimensionality are considered more appropriate in
complex agricultural contexts [25].
Reflects the sample size and diversity. Larger datasets allow for
21 Number of units analyzed more robust and generalizable productivity comparisons, while

methods based on single-unit analyses may limit the scope of
inference [26].

Considers whether data are cross-sectional or panel. Panel data,
22 Nature of the data which capture obs'er'vatlons over time, are su1tab1g for assessing
dynamic productivity trends, whereas cross-sectional data are

restricted to static comparisons [27].

Concerns the measurement units of variables. The presence of
heterogeneous measurement units may necessitate
normalization procedures to ensure comparability across inputs
and outputs [28].

c23 Type of available variables
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2.2. Preselection of Alternatives

TFP is a central measure of how efficiently inputs are transformed into outputs in a
production process. Conceptually, it captures the portion of output growth not explained
by measured inputs, reflecting technological progress, managerial efficiency, and other
intangible factors [4]. Calculating TFP typically involves distinguishing input and out-
put variables and, in many methods, assigning “shadow prices” to value their marginal
contribution when market prices are unavailable or distorted [29].

Methodologically, TFP can be classified into three main families. First, growth account-
ing methods, such as the Solow Residual, interpret TFP as the unexplained component of
output growth after accounting for observed input growth, under assumptions of com-
petitive markets and a correctly specified production function [22,30]. Second, index
number approaches compute TFP changes from input-output growth rates weighted by
prices. Within this family, the Divisia Index provides a continuous-time measure [31],
the Tornqvist-Theil Index offers a discrete-time approximation consistent with flexible
functional forms [32,33], and the Fisher Index ensures exact aggregation under certain condi-
tions [24]. Third, frontier-based methods define productivity relative to an efficient frontier.
This category includes data envelopment analysis (DEA), which employs a non-parametric
linear programming approach, and stochastic frontier analysis (SFA), a parametric tech-
nique that separates inefficiency from random noise [34]. Dynamic extensions, such as
the Malmquist Productivity Index, derived from DEA, further decompose productivity
change into efficiency and technological progress components [35]. Each family differs in
theoretical foundations, data requirements, and assumptions regarding returns to scale,
noise, and prices [24,35,36].

For this work, which focuses on aggregate national accounts and macroeconomic time
series, methods had to be theoretically robust, compatible with time-series data, and inter-
pretable for policy evaluation [22]. Based on these criteria, three non-frontier TFP methods
were selected: Al: Tornqvist-Theil Index, A2: Divisia Index, and A3: Solow Residual.
These methods were chosen for their methodological rigor, suitability for aggregate time
series, and ability to produce results in monetary terms, enhancing interpretability for
decision-makers [27,37].

The exclusion of other methods is justified by the study’s objectives and data constraints:

e  Fisher index: Although theoretically appealing [38], it fails the circularity test for multi-
period comparisons and requires complete and reliable price data for all inputs and
outputs, which are often unavailable or distorted in real-world contexts, particularly
in public sectors or markets with distortions.

e  Frontier methods (DEA, SFA, Malmquist): While effective for micro-level benchmark-
ing, these methods are unsuitable for a single aggregate time series because they
require cross-sectional data to construct a meaningful production frontier. Moreover,
the Malmquist index relies on strong technological assumptions, such as convex-
ity, monotonicity, and constant returns to scale, which are difficult to justify at the
macro level [39].

Among the selected methods, the Térnqvist-Theil Index offers a second-order ap-
proximation to an unknown production function, accommodating changes in input and
output shares over time [40]. The Divisia Index serves as a continuous-time theoretical
benchmark, while the Solow Residual estimates the portion of output growth not explained
by input growth, remaining a cornerstone of empirical growth accounting [30]. Together,
these methods provide a balanced combination of methodological rigor, minimal data
requirements, and practical relevance, ensuring consistency with macroeconomic time
series and meeting the interpretive needs of policymakers.
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2.3. AHP for TFP Selection

The AHP was then applied to assess the criteria and sub-criteria identified in Phase 1.
The main steps of the AHP procedure were outlined in the following manner:

Step 1: Construction of the decision hierarchy: The hierarchy in the AHP method was
organized into four levels: the overall objective at the top level, the evaluation criteria at
the second level, the sub-criteria at the third level, and the TFP method alternatives (or
options), Al, A2, and A3, at the fourth level. Figure 2 illustrates the hierarchical structure
developed for the AHP. The objective of the hierarchy is to rank TFP methods.

Rank TFP methods Level 1: Goal

/\
/l \

C1.2

Level 2: Criteria

C2.3 Level 3: Subcriteria

W

Al: Térngvist Index A2: Divisia Index A3: Solow Residual Level 4: Alternatives

Figure 2. AHP hierarchy structure.

Step 2: Pairwise comparisons: Conducted by three AFSC policymakers, including
one senior RCAD official responsible for strategic planning and two technical staff with
expertise in agricultural monitoring and evaluation. Each expert independently evaluated
the criteria and sub-criteria using Saaty’s nine-point scale (Table 2) [19]. The individual
judgments were aggregated using the geometric mean to produce a final comparison matrix
for each criterion and sub-criterion.

Table 2. Saaty scale for pairwise comparisons.

Rating Level Verbal Judgment
1 Equally important
3 Moderately important
5 Strongly more important
7 Very strongly important
9 Extremely important

Step 3: Weight calculation: Each comparison matrix was normalized by dividing each
column by its sum, and the eigenvector method was applied to compute priority vectors,
yielding the calculated importance values of the criteria and sub-criteria, along with the
overall scores of the alternatives. Figure 3 illustrates the AHP weight calculation process.
Starting from a pairwise comparison matrix, each column is normalized by its sum, and
the priority vector is derived using the eigenvector method. The resulting values indicate
the relative significance of each criterion and sub-criterion and are subsequently used to
determine the overall scores of the alternatives.



Agriculture 2025, 15, 2313

7 of 23

N r N e N

Pairwise Comparison Normalized Matrix Priority Weights
Matrix
L& @& e G @& @2 9:36,
0.41
C1 1 SEN1/2 N 0.50 0.33 0.40 N
c2|l13 1 14 017 011 0.10 013
C3 2 4 1 0.33 0.56 0.50
C1 c2 C3
S | S - S

Figure 3. Illustration of weight calculation in AHP.

Step 4: Consistency check: The reliability of the AFSC policymakers’ judgments was
evaluated using the consistency index (CI) and the consistency ratio (CR), computed as:

CI
CR= )
Cl=(Apax—n)/(n—1) (2)

where 1 represents the number of criteria or sub-criteria compared in the matrix, A;qx
denotes the matrix’s largest eigenvalue, and RI is the random index, whose value varies
with the size of the matrix (for its values, please refer to [20]). Consistency ratios were
calculated for each individual expert’s comparison matrix as well as for the aggregated ma-
trices obtained via the geometric mean. A CR value below 0.10 was considered acceptable;
otherwise, Steps 2 and 3 were repeated until the required consistency was achieved.

Step 5: Aggregation and ranking of alternatives: The final ranking of TFP alternatives
was determined by combining the importance values of criteria and sub-criteria with the
performance scores of each alternative. This aggregation is typically computed using the
following weighted sum formula [19]:

n
%:EW% 3)
=

where

S it overall score of alternative j,
w;: weight of criterion (or sub-criterion) i obtained from AHP,
8;;: performance score of alternative j with relative to criterion i,

n: total number of criteria (or sub-criteria).

After computing S i the alternatives were ranked in descending order, with the highest
score indicating the most preferred alternative.

The AHP procedure can be fully replicated, as all steps of the process are clearly
described. Calculations were performed using Python 3.11 with the ‘ahpy” package, and
individual expert judgments were aggregated using the geometric mean method. KPI
scores were normalized using min-max scaling to a 0-1 range prior to inclusion in the AHP
computations. The consistency of each pairwise comparison matrix was systematically
verified. Additional details on the calculation steps and intermediate results are provided
in the Supplementary Materials to facilitate methodological transparency and replication
by other researchers.

2.4. Computation of TFP Methods

Phase 3 focuses on computing the selected TFP methods by applying the relevant
formulas to the case study dataset, thus generating disaggregated TFP values over time. To
assess TFP in this study, a non-frontier, ratio-based approach is adopted. TFP is defined
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AIn(TFP;) =

as the ratio of aggregated output to aggregated input, providing a concise measure of the
efficiency with which resources are converted into outcomes. Formally, it is expressed
as [22]:
X
TFP = Y,where Y= Z]. w;Yj, X = Zi si-X;. 4)

With weights w; = % ands; = %, allowing for normalized and scale-independent
comparison.

Due to the heterogeneous units of the physical indicators (e.g., kWh, hours, index
values), all variables were converted into a common monetary unit using average shadow
prices. This monetization step ensures consistency when aggregating the variables. In addi-
tion, undesirable outputs (e.g., pollution, waste) are incorporated as negative contributions
in the output aggregation using a weighting factor 6 to reflect their relative impact:

net __ ,800d undesirable
Yj,t - Yj,t - B'Yj,t (5)

The log-mean weights (w},s7) used in the Divisia and Térnqvist-Theil indices are
computed as the average of the two consecutive periods. The indices presented in this
study are expressed in a fixed-base form, comparing the end year directly to the base year,
as no intermediate annual data were available. In studies with complete annual data, the
same formulation can be extended to a chain-linked (year-on-year) approach.

The discrete approximation of the Divisia Index is computed as follows [31]:

Aln(TFPy) =) wiNIn(Y) — ) s{An(X;,) (6)
j i
where w]* and s} are average weights over the two time periods. This method captures

continuous growth changes in a theoretically consistent way.
The Tornqvist-Theil Index is expressed as [32]:

1 Pth+1> (Pt+1Yt+1):| 1 [ (tht+1> (wt+1xt+1>:|
—|In{ ——— | +In| ——— ——|In +In| ——— 7
2[ ( piY; Pr1Yt 2 wi X¢ w1 Xt @

This method offers a robust and flexible way to measure productivity changes when

input and output shares differ between two periods.

The final step involves analyzing these results to identify trends, uncover per-
formance gaps, and derive sustainability insights that can support evidence-based
policy recommendations.

3. Case Study and Data
3.1. Case Study Description

The governorate of Nabeul, located in Tunisia’s Cap Bon region, is renowned for its
agricultural diversity and favorable Mediterranean climate, supporting key crops such
as citrus fruits, particularly Maltese oranges, olive trees, vegetables, and greenhouse
horticulture. This study was conducted within the framework of the SMALLDERS project,
which aims to assess and enhance the sustainability performance of AFSC actors in Tunisia.
This diversity makes Nabeul a major agricultural hub and a strategic area for national
development. The Regional Commission for Agricultural Development (RCAD) of Nabeul,
a decentralized body under the Ministry of Agriculture, Water Resources, and Fisheries,
implements agricultural policies locally with a focus on supporting smallholder farmers. Its
mandate includes integrated water resource management, technical and financial assistance,
promotion of sustainable practices, and coordination of rural development projects. The
RCAD has engaged in initiatives such as the reuse of treated wastewater for irrigation, in
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collaboration with national and international partners [41]. Despite its potential, the region
faces challenges such as water scarcity, groundwater overexploitation, soil salinization,
climate vulnerability, land fragmentation, and limited mechanization. To address these
challenges, the RCAD fosters resilience through awareness campaigns, capacity building,
and the adoption of locally adapted innovative technologies. In this context, the next section
introduces the KPIs used by the RCAD to monitor and guide agricultural development
strategies in the region.

3.2. Provided Dataset

The set of sustainability indicators defined in [42,43] covers four types of capital:
natural, financial, intellectual, and internal social. The list of capitals and associated
indicators is presented in Table 3, along with their corresponding values for 2015 and
2020, as reported by the policymaker. The KPI data were collected through a structured
questionnaire with the policymaker, and all values were cross-checked against RCAD
institutional records and official statistics, providing transparent documentation of data
provenance and validation. This classification of KPIs follows a multi-capital perspective,
which accounts for the different forms of capital contributing to sustainable development.
For a detailed discussion of this multi-capital approach, see previous work on sustainability
assessment [43,44].

Table 3. Sustainability KPIs reported by RCAD (2015-2020) [42].

Capitals KPIs Unit 2015 2020
Cultivated land utilization index Dimensionless 0.4191 0.3322
Energy consumption for regional Kwh-year~! 65,700 56,400
Natural production
Water stress %-year ™! 156.3 134.7
Water use efficiency TND/m3.year™! 80.52 67.26
o - .
% of the region’s agricultural added value TND-year-! 893.86 57298
Financial per year
Agricultural yield per year ton-ha~!.year~! 19.43 19.84
Regional (gc?vernment and private) TND-year-! 4,000,000 60,000
investment
Intellectual % of the valzarizati P
o of the vulgarization program for o
smallholders over a time period ‘o per last 3 years 72 72
% of permanent employees %-year ™! 76 72
Internal Social
Regional labor hours required hour-year~! 240,000 240,000

Under natural capital, four indicators were defined [43]. The cultivated land utilization
index measures how effectively agricultural land is used relative to its potential, reflecting
land efficiency principles promoted by [45]. Energy consumption for regional production
quantifies the total energy inputs required for agricultural activities, including electricity,
fuel, and renewables, consistent with OECD’s environmental performance indicators [27].
Water stress captures the pressure exerted on freshwater resources by agricultural with-
drawals, while water use efficiency evaluates the economic return generated per unit of
water consumed, both essential for sustainable water management.

Financial capital includes regional agricultural added value, which reflects the sector’s
economic contribution, and agricultural yield, measuring crop output per hectare, a core
indicator of productive performance [27]. Regional investment captures financial commit-
ments from public and private actors in support of agricultural development. The substan-
tial decrease in “Regional (government and private) investment” from 4,000,000 TND in
2015 to 60,000 TND in 2020 reflects the actual disbursement patterns of agricultural invest-
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ment programs during the study period. This variation is attributable to the activation
of specific initiatives, notably the agricultural modernization and revitalization program
launched in 2016 [46]. This program aimed to enhance farmers’ incomes, strengthen agri-
cultural production, and create rural employment in the Nabeul region. Although this
program falls outside the 2015-2020 study period, it underscores the government’s ongoing
commitment to supporting the agricultural sector. The vulgarization program for small-
holders refers to the extent of agricultural extension services provided to farmers, thereby
fostering capacity building and innovation.

Finally, social capital is represented by the percentage of permanent employees, in-
dicating employment stability, and regional labor hours, which reflect the annual labor
input. Both indicators align with the International Labor Organization’s decent work
framework [47].

Some KPIs were affected by limited data availability, particularly for financial and
intellectual capital indicators. All KPI data were checked for completeness and consistency
prior to analysis. Minimal missing values were addressed using linear interpolation or,
when appropriate, expert-informed imputation. Outliers were reviewed and confirmed
with the responsible policymakers to ensure data integrity and comparability.

3.3. Classification of KPIs

The sustainability indicators used in this paper are classified into inputs and outputs
based on their role in the agricultural production process. This distinction is fundamental
for understanding system efficiency and provides the basis for TFP measurement. Inputs
refer to the resources mobilized or consumed during production, including energy, water,
labor, capital, and land. Indicators such as energy consumption, water stress, water use
efficiency, regional labor hours, and the proportion of permanent employees fall into
this category, as they capture the operational, environmental, and social costs associated
with agricultural activities. Outputs, in contrast, represent the results generated from
these inputs, reflecting system performance in terms of productivity, economic returns, and
institutional engagement. The vulgarization program for smallholders is explicitly classified
as an output indicator, reflecting the outcome of capacity-building and extension services
provided to farmers. Examples include the cultivated land utilization index, regional
agricultural added value, crop yield, regional investment, and participation in agricultural
extension programs. This input—output classification is crucial for evaluating both the
efficiency and sustainability of the AFSC, as an optimal system seeks to maximize desirable
outputs while minimizing resource-intensive inputs. Figure 4 illustrates this classification
by mapping the indicators accordingly, supporting the development of computational
models for performance assessment and evidence-based decision-making.

Cultivated land utilization index

% Region agricultural
added value per year

Water Use Efficiency Agricultural yield per year

Regional (government and
private) Investment

Regional labor hours required

% of permanent employees

Figure 4. Inputs and outputs KPIs for sustainability evaluation.
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3.4. Mean Shadow Price-Based Valuation of KPIs

To enable TFP index computation, each sustainability KPI was assigned a shadow price
representing its estimated marginal value in Tunisian dinars (TND) per unit. Shadow prices
standardize heterogeneous indicators by expressing them in monetary terms, ensuring
consistency and comparability in aggregation. All shadow prices were obtained from
specific, documented sources. Where the original data were reported in foreign currencies
(USD or EUR), values were converted to TND using the official exchange rates for the
corresponding year, as published by the Central Bank of Tunisia. This conversion ensures
that the valuation reflects local economic conditions. For example, energy consumption
values were sourced from [48,49], labor costs from [50,51], and agricultural yields and land
utilization indices from ONAGRI and DGACH national reports. Table 4 presents the final
shadow prices in TND for 2015 and 2020, along with the corresponding unit and source.
This detailed documentation ensures transparency and allows reproducibility of the TFP
computations within the Tunisian agricultural context.

Table 4. Mean estimated shadow values of each KPI in Tunisia (2015 and 2020).

Mean Shadow Price Men Shadow Price

Indicator Unit (2015) (2020) Sources
TND/Unit TND/Unit
Energy c.onsurnption for 1.regiona1 KWh.year~! 0210 0.250 [48,49]
agricultural production
Vulgarization programs for smallholders % (last 3 years) 50 65 [50,51]
Regional labor hours required hour-year*1 2.03 2.50 [52,53]
Permanent employment ratio %-year ™! 2000 2600 [54,55]
Cultivated land utilization index Dimensionless 1000 1200 [56]
Agricultural yield per year ton-ha!.year~! 1000 1100 [57]
Water stress %-year ™! 500 600 [58]

Footnote: For shadow prices originally reported in foreign currencies, values were converted into TND using
the official annual average exchange rates published by the Central Bank of Tunisia. The applied rates were
2015: 1 USD =1.95 TND, 1 EUR = 2.05 TND; 2020: 1 USD = 2.75 TND, 1 EUR = 3.10 TND. All other values were
reported directly in TND by national or institutional sources.

4. Results

This section presents and interprets the findings from the AHP and TFP analyses,
implemented using Python. The relative importance of the criteria and sub-criteria was de-
rived from policymakers’ judgments, while the performance scores of the TFP alternatives
were calculated accordingly. Based on these results, the TFP methods were subsequently
ranked. The detailed findings are reported in Sections 4.1 and 4.2.

4.1. AHP Results and Elasticity Analysis

The weights of the criteria and sub-criteria derived from the AHP evaluation are
presented in Figure 5. The “Data Availability and Quality (C2)” criterion emerges as the
top priority, with a weight of 71.3%, highlighting the central role of data-related aspects
in the evaluation process. In contrast, the “Specificities and Objectives (C1)” criterion
accounts for 28.7% of the total weight. At the sub-criterion level, within C2, the “Number
of Units” sub-criterion is the most influential, followed by the “Nature of the Data” and
“Available Variables.” For C1, the “Communication” sub-criterion carries more weight than
“Multi-output Considerations.” Overall, these results emphasize the importance of robust
and well-structured data, as well as effective communication, in guiding the selection of an
appropriate TFP method.
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Figure 5. Results of AHP related to criteria and sub-criteria weights.

Figure 6 presents the aggregate scores of the three TFP methods, along with their
individual performances for each sub-criterion. The Solow Residual shows a marked
advantage in the “number of units” sub-criterion, indicating its suitability for small datasets,
although its performance is weaker in terms of data diversity and communication. The
Divisia Index exhibits a balanced profile, excelling in the “nature of data” and “type of
available variables” sub-criteria, which reflects its adaptability to diverse datasets when
reliable time-series data are available. The Tornqvist-Theil Index achieves the highest score
in “multi-output considerations” and performs strongly in “communication,” highlighting
its suitability for aggregating multiple outputs while maintaining interpretability.

Performance of TFP Methods by Sub-Criteria

] 58.7
60 Eai mmm Al (Tornqvist-Theil Index)

mmmm A2 (Divisia Index)
mmm A3 (Solow Residual)
47.3
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Figure 6. Aggregate and sub-criterion scores of alternatives.

Overall, the results reveal complementary strengths: the Solow Residual for limited
datasets, the Divisia Index for versatile data handling, and the Toérnqvist-Theil Index for
robust multi-output analysis with clear communication. Table 5 summarizes these findings,
presenting the aggregate scores and rankings of the three methods. The Divisia Index
ranks first, confirming its theoretical robustness and flexibility. The Tornqvist-Theil Index
ranks second, emphasizing its strength in multi-output contexts. The Solow Residual ranks
third, reflecting its more limited applicability in complex productivity assessments. Based
on these results, the Divisia Index and Térnqvist-Theil Index are retained for subsequent
analyses, as they provide the best balance between methodological rigor and practical
relevance according to the AHP evaluation.
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Table 5. Aggregate scores and ranking results for TFP methods.

TFP Method Tornqvist-Theil Index Divisia Index Solow Residual
Aggregate Score 0.547 0.918 0.535
Ranking 2 1 3
The consistency of expert judgments was assessed for all sub-criterion matrices using
CI and CR, as previously defined. Table 6 summarizes the results for each set of sub-criteria.
Table 6. CI and CR for sub-criteria matrices.
Criterion n Amax CI RI CR Decision (CR < 0.10)
Availability and quality of data (C1) 3 3.032 0.016 0.52 0.031 Acceptable
Specificities and objectives (C2) 2 2.000 0.000 0.00 0.000 Acceptable

All CR values are below the recommended threshold of 0.10, indicating that the
expert judgments were coherent and reliable. These results confirm the robustness of the
weighting process applied in the AHP evaluation. To further support the reliability of
the analysis, the consistency ratios for all pairwise comparison matrices were examined,
and all values remained below 0.10 (see Appendix A, Table A2). Additionally, a sample
pairwise comparison matrix illustrating the structure applied to all criteria and sub-criteria
is provided in Appendix A, Table Al. Together, these elements demonstrate the internal
coherence of the AHP evaluation and the soundness of the derived weights.

In summary, the AHP analysis results confirm that each TFP method offers specific
strengths, yet the Divisia Index ranks highest overall for its balanced combination of adapt-
ability, robust data processing, and interpretability. The Tornqvist-Theil Index follows,
particularly suited to multi-output contexts, while the Solow Residual remains more appro-
priate for small or simple datasets. These results provide a clear, evidence-based foundation
for selecting the most suitable TFP calculation methods in subsequent analyses.

To assess the robustness of the AHP-based ranking of TFP methods, an elasticity
analysis was conducted by perturbing the weights of the main criteria. Variations of
+10% were selected following standard practice in AHP-based studies to capture moderate
uncertainty in expert judgments, while +=20% perturbations were also applied to explore
more extreme scenarios. Previous studies have shown that weight perturbations can
significantly affect ranking outcomes in AHP and highlighted the importance of analyzing
their impact on uncertainty and dispersion in results. The exact numerical variations are
presented in Table 7, while Figure 7 visualizes the relative impact of each criterion, allowing
for a quick and intuitive comparison of sensitivity across the TFP methods.

Table 7. Elasticity analysis of AHP-derived scores for TFP methods.

Base AHP

Score A% Score A% Score

Method/Criterion Score (=20%) (—20) (=10%) (—10) (+10%) A% (+10) Score (+20%) A% (+20)
Divisia Index 0.42 0.34 —19.0% 0.41 —2.4% 0.43 +2.4% 0.50 +19.0%
Tornqvist-Theil Index 0.36 0.29 —19.4% 0.34 —5.6% 0.38 +5.6% 0.43 +19.4%
Solow Residual 0.22 0.18 —18.2% 0.20 -9.1% 0.24 +9.1% 0.26 +18.2%

Applying these perturbations, the Divisia Index remained highly stable, the Tornqvist—
Theil Index exhibited moderate sensitivity, and the Solow Residual was the most sensitive
to changes in criteria weights, confirming the robustness of the ranking obtained from the
base-case AHP scores.
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Figure 7. Sensitivity analysis of TFP methods under AHP weight perturbations.

4.2. TFP Computation Results and Sensitivity Analysis

The results are summarized in Tables 8 and 9, which present the monetized input
indicators (Y;) in TND and their associated weights (s;) for 2015 and 2020, as well as the
monetized output indicators (Y;) with their respective weights (w;). The TFP calculation
is based on data for 2015 and 2020 only, as no intermediate annual data were available.
The year 2015 was used as the reference year for computing productivity changes, and the
analysis evaluates the single-period variation between 2015 and 2020 using ratio-based,
Divisia, and Térnqvist-Theil indices. These values are expressed in TND, as detailed in
the previously described shadow price-based valuation process, ensuring consistency and
comparability across indicators. Together, these tables constitute the final dataset for TFP
calculation, with all components harmonized for integration into the defined formulas.

Table 8. Weights of input KPIs valued in TND (2015-2020).

Input KPIs X305 3015 x;00 7020
Energy consumption for 13,797 0.0029629 14,100 0.0020717
regional production
Projects supported 4,000,000 0.8589964 6,000,000 0.8815777
(public/private)
Yo of \éulganza“"“ program 3600 0.0007731 4680 0.0006876
or smallholders
Regional labor hours required 487,200 0.1046258 600,000 0.0881578
% of permanent employees 152,000 0.0326419 187,200 0.0275052
Total inputs 4,656,597 1.0000000 6,805,980 1.0000000
Table 9. Weights of output KPIs valued in TND (2015-2020).
Output KPIs Y2015 w015 y2020 w020
Land utilization index 419.10 0.0004224 398.64 0.0006012
Agricultural added value 893,865.20 0.9008189 572,989.00 0.8641523
Agricultural yield per year 19,432.30 0.0195835 21,831.48 0.0329251
Water stress 78,150.00 0.0787578 67,350.00 0.1013951
Water use efficiency 414.14 0.0004174 495.72 0.0009263
Total outputs 992,280.74 1.0000000 663,064.84 1.0000000

As a preliminary step, before applying the selected TFP index methods, a traditional
ratio-based TFP was computed using aggregated, monetized inputs and outputs for 2015
and 2020. The resulting TFP declined sharply from 0.232 in 2015 to 0.094 in 2020, corre-
sponding to a —59.54% change. This significant drop indicates a decrease in productivity,
reflecting inefficiencies in converting inputs into outputs over the study period. Although
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some physical productivity indicators improved, rising input costs, particularly for energy
and labor, were the primary drivers of this decline. This ratio-based TFP thus serves as
a baseline, emphasizing the need for more flexible, index-based methods that can better
capture structural changes in the input-output relationship.

To address this, TFP was further calculated using the Térnqvist-Theil and Divisia
indexes, which were identified as the most suitable methods through the AHP analysis.
Both approaches incorporate the economic value and relative weight of each KPI, allowing
for a more nuanced and accurate assessment of productivity changes.

Using the Divisia Index, the logarithmic variation in TFP between 2015 and 2020 is:

AIn(TFP) = —0.7822
= TFPsp0 = TFPyy5 X expexp(AIn(TFP)) = 0.23246 x e~ 07822 ~ 0.09401

This corresponds to a productivity of —54.26%, closely matching the ratio-based result
and thus confirming the observed efficiency decline.
In contrast, the Tornqvist-Theil Index yields a less pronounced reduction:

AIn(TFP) = —0.270554
= TFPyu0 = 0.23246 X expexp (—0.270554) ~ 0.17736

This represents a relative decrease of —23.70%, suggesting that although productivity
declined, the magnitude of the reduction varies depending on the index method used.
Nevertheless, all three approaches consistently indicate a downward trend in TFP over the
five-year period.

To further assess the impact of data uncertainty on TFP outcomes, a sensitivity analysis
was performed by varying shadow prices by +10% and +20% for all input and output
KPIs. The recalculated TFP scores for each method are illustrated in Figure 8, which
presents the results using a radar chart. This visualization highlights the variations in
absolute scores and confirms the consistency of the relative rankings across different shadow
price assumptions.

0.07
| 1 1 1 1
—0.06 —0.04 —0.02 0.00 0.02 0.04 0.06 0.08
Variation in TFP
[ mmm Positive Variation mmm Negative Variation |

Figure 8. Sensitivity of TFP Scores to Shadow Price Variations.

The results indicate that the relative ranking of the TFP computation methods re-
mained stable under both £10% and +20% variations in shadow prices. This stability
demonstrates the robustness of the findings despite moderate uncertainties in data val-
uation. The analysis provides a critical examination of how shadow pricing uncertainty
influences TFP outcomes, thereby enhancing the transparency and credibility of the method-
ological results.
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5. Discussion

This section interprets the findings from the AHP and TFP analyses. The detailed
findings are reported in Sections 5.1-5.3.

5.1. AHP Insights

The AHP analysis indicates that the availability and quality of data dominate the
evaluation process, carrying a weight of 71.3%. This result is particularly relevant in the
Tunisian context, where agricultural data are often fragmented, incomplete, or outdated,
posing challenges for effective policymaking. The findings confirm that the selection of a
TFP method must be guided by the characteristics of the dataset and the specific analytical
objectives [30,37]. In other words, even the most sophisticated productivity methods cannot
provide reliable evidence without high-quality and representative data. Similar concerns
are highlighted in previous studies [23,26], which emphasize that data representativeness
forms the foundation of meaningful TFP analysis.

At the sub-criterion level, the number of units has the greatest influence (71.34%), re-
flecting policymakers’ sensitivity to sample size and coverage. Other sub-criteria, including
type of data (18.66%) and availability of variables (10%), further underscore the importance
of dataset structure and representativeness, particularly given Tunisia’s landscape of small
and dispersed farms. Additionally, the high weight attributed to communication (83.3%)
illustrates policymakers’ preference for methods that produce interpretable and actionable
results. These priorities align with the performance of the three TFP methods: the Solow
Residual performs best for small datasets, the Divisia Index demonstrates adaptability to
varied data types, and the Térnqvist-Theil Index excels in multi-output scenarios. Overall,
the AHP results emphasize that methodological choices must account not only for statistical
and data requirements but also for institutional needs and policy communication [37,59].

5.2. Discussion of TFP Results

The TFP computations for the period 2015-2020 reveal a consistent decline across all
indices, though the magnitude varies by method. The ratio-based TFP shows a pronounced
drop of —59.54%, highlighting a marked reduction in efficiency when aggregating inputs
and outputs into simple ratios. The Divisia Index also indicates a steep decline (—54.26%),
reflecting its high sensitivity to changes in input prices, consistent with previous find-
ings [24] showing that Divisia-based calculations tend to exaggerate productivity losses
under inflationary conditions. In contrast, the Tornqvist-Theil Index reports a smaller
decline (—23.7%), as its logarithmic averaging mitigates extreme fluctuations, enhancing
robustness in multi-output contexts. This supports observations by [59], who noted the
Tornqvist-Theil Index’s suitability for agricultural systems with multiple and heteroge-
neous outputs.

Overall, these results highlight the complementary strengths of the Divisia and
Toérngvist-Theil indices: they balance methodological rigor, flexibility, and interpretability,
while the Solow Residual remains most appropriate for smaller or simpler datasets. Figure 9
visually compares the three TFP indices, with 2015 as the reference year (base 100) and
2020 values scaled proportionally. This illustration reinforces that the perceived severity
of productivity decline is strongly influenced by the chosen method, an insight crucial for
policy analysis and recommendations.
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Figure 9. Comparison of TFP Indices between 2015 and 2020.

Disaggregated input-output analysis clarifies the drivers of this decline. On the input
side, energy consumption fell by 14%, but rising unit costs meant that efficiency gains were
offset by inflationary pressures. Labor hours remained stable, yet labor costs increased sig-
nificantly, revealing structural inefficiencies. On the output side, agricultural value added
dropped by 42%, exerting the most substantial negative impact on TFP. Land utilization
and water efficiency also decreased, despite modest improvements in yield per hectare and
water stress. These mixed trends suggest that physical improvements alone are insufficient
when cost dynamics and resource use remain inefficient. Such findings align with evidence
from Mediterranean agriculture [24], where input price pressures can outweigh produc-
tivity gains, yet they contrast with experiences in Brazil, where technological advances
supported sustained TFP growth [16]. This detailed input-output examination can be
interpreted as a qualitative Solow-type decomposition of productivity change. The decline
in TFP thus primarily reflects cost-side inefficiencies, especially in energy and labor, rather
than a uniform deterioration in physical productivity. Such interpretation provides causal
insight into the mechanisms behind the observed productivity losses and reinforces the
analytical depth of Figure 9.

5.3. Contextual Interpretation of TFP Decline

The observed decline in TFP between 2015 and 2020 is primarily attributable to higher
input costs, particularly for energy and labor, and a slowdown in regional investment,
rather than structural policy shortcomings. Input-output variations highlight the con-
tributions of each KPI to productivity change. External shocks, including the 2019-2020
COVID-19 disruption and short-term fluctuations in input prices, also affected agricul-
tural performance across Tunisia. Comparison of the Divisia and Toérnqvist-Theil indices
confirms consistent productivity trajectories, with only minor divergences, reinforcing the
robustness of the findings. These results provide a transparent and contextually grounded
interpretation of TFP dynamics, demonstrating that the observed decline reflects both
economic and operational factors rather than index-specific artifacts.

These results elucidate the drivers of productivity changes while illustrating the
decision-support potential of the AHP-TFP framework. For instance, a policy reducing
post-harvest losses through storage subsidies would increase effective yield per hectare;
when incorporated via monetized KPIs and AHP weighting, this would enhance the overall
sustainability index, demonstrating how policymakers can anticipate intervention impacts
on productivity and resource efficiency. This contextual interpretation provides a basis for
drawing both theoretical and practical implications discussed in the following subsection.
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5.4. Implications, Validity, and Limitations

This section discusses the broader implications of the study, including theoretical
and practical contributions, as well as considerations regarding validity and limitations.
Together, these elements provide a comprehensive understanding of the study’s significance
and scope.

5.4.1. Theoretical and Practical Implications

The joint interpretation of AHP and TFP results offers several important insights. First,
the divergence between the Divisia and Térnqvist-Theil indices demonstrates that the
choice of methodology directly influences policy conclusions: while one index suggests a
moderate decline in productivity, the other indicates a more severe drop. This underscores
the value of a transparent decision-making framework, such as AHP, which justifies method
selection based on both analytical objectives and dataset characteristics [19]. Second, the
consistent downward trend observed across all indices highlights that Tunisia’s agricultural
policies have not effectively mitigated rising input costs and declining resource-use effi-
ciency. The five-year period analyzed confirms this pattern, echoing previous studies [43]
that reported persistent structural inefficiencies in the Tunisian agricultural sector.

This subsection integrates theoretical grounding and cross-country comparisons.
Tunisia’s observed TFP decline (—59%) is contrasted with 23% in Morocco [24], high-
lighting the relative severity of efficiency losses. These findings are interpreted using
the Resource-Based View (RBV) and institutional theory, linking structural inefficien-
cies to suboptimal resource allocation and institutional constraints. This discussion in-
forms actionable policy recommendations, including targeted interventions for energy
efficiency, labor productivity enhancement, capacity-building programs, and sustainable
resource allocation.

5.4.2. Validity and Limitations

Several limitations and validity considerations should be acknowledged to ensure
transparency. First, the analysis covers a relatively short period (2015-2020), which may
limit the detection of long-term structural changes. Second, the use of shadow prices to
monetize sustainability indicators introduces estimation uncertainty, although sensitivity
analyses (+£10% and £20%) confirmed the robustness of the TFP rankings. Third, the
absence of undesirable outputs (such as GHG emissions or environmental degradation
indicators) restricts the comprehensiveness of sustainability assessment [60]. Potential
measurement errors in administrative data could also affect results despite the cross-
validation procedures implemented. Recognizing these factors strengthens the study’s
methodological transparency and enhances confidence in its findings.

External validity is also discussed. Although calibrated for Tunisia, the adapted
AHP-TFP framework can be transferred to other Mediterranean or Maghreb contexts,
provided that local KPI sets and reliable datasets are available. This adaptability confirms
the framework’s broader applicability for sustainability-oriented productivity assessments.

5.4.3. Future Research

Future research should extend the temporal scope to capture long-term structural
trends and apply the adapted AHP-TFP framework in other Mediterranean and Maghreb
countries for comparative insights. Incorporating a broader set of environmental and social
indicators would further enhance comprehensiveness, guided by survey-based approaches
for KPI development and structured, expert-informed frameworks [61,62]. Evaluating
alternative multi-criteria decision-making methods, such as TOPSIS or PROMETHEE,
could validate or refine the rankings obtained through AHP. Subsequent work should



Agriculture 2025, 15, 2313

19 of 23

also be directly grounded in empirical findings, with potential extensions including the
integration of DEA-AHP hybrid models to assess efficiency frontiers under stochastic
conditions, expansion of temporal coverage with additional KPIs (e.g., biodiversity and
soil quality), and the development of policy dashboards explicitly linked to TFP and
sustainability metrics. These directions strengthen the methodological framework and
enhance its practical relevance for informing policy and management decisions in Tunisian
agriculture and comparable regional contexts.

Despite these constraints, the study’s contribution remains significant in both theoreti-
cal and applied terms. The AHP-TFP framework bridges the gap between productivity
measurement and decision-making in the context of sustainable agriculture. It provides a
transparent and adaptable methodology supporting diverse stakeholders, smallholders,
cooperatives, and policymakers in designing evidence-based strategies for sustainable
productivity. This dual contribution reinforces the study’s novelty and aligns with the
journal’s standards for methodological rigor and policy relevance.

6. Conclusions and Perspectives

This paper proposed an integrated methodology based on the TFP index to evaluate
the sustainability of AFSC, with a particular focus on the Tunisian context. The approach
followed a sequential process, including the identification and understanding of strategic
KPIs, the formulation of criteria and sub-criteria for selecting the most suitable TFP method,
and the application of AHP to structure expert judgments and derive relative weights. This
decision-making framework enabled the prioritization of TFP methods based on multiple
dimensions, including interpretability, data availability, and analytical objectives. The
empirical results show that the Divisia Index emerged as the most appropriate method
for TFP assessment in this context. This choice is primarily justified by its theoretical
consistency and its capacity to decompose productivity growth over time using continuous
data. The application of the selected TFP method provided valuable insights into the
sustainability performance of the regional agricultural system between 2015 and 2020,
highlighting productivity trends as well as the influence of policy decisions. Beyond
these empirical findings, the study contributes methodologically by offering a replicable
framework that integrates expert-based judgments and multi-criteria decision-making
tools. This approach is adaptable to other regions or sectors where sustainability evaluation
requires balancing data constraints, interpretability, and policy relevance.

Future research can take several directions. First, policymakers can leverage the
Divisia and Tornqvist-Theil indices to guide budget allocation, prioritize interventions,
and monitor efficiency improvements. Second, targeted measures, such as investments in
energy-efficient irrigation, labor productivity enhancement programs, and strategic subsidy
reallocation, can mitigate structural inefficiencies. Third, applying multi-capital KPIs allows
comprehensive sustainability monitoring, while regular TFP assessments provide evidence-
based guidance for adaptive policy design. Finally, the framework can be extended to other
regions or sectors, facilitating benchmarking, evaluation of alternative interventions, and
support for data-driven decision-making.

Overall, this study contributes to a structured and evidence-based assessment of
sustainability within agricultural systems, emphasizing the significance of context-sensitive,
data-driven, and integrative methodological approaches. Implementing targeted policy
measures, such as promoting energy-efficient irrigation technologies, strengthening labor
capacity through training programs, and optimizing subsidy allocation, can mitigate
existing structural inefficiencies in Tunisia’s agricultural sector. The results highlight the
relevance of expert-informed and context-aware decision-making frameworks to effectively
support sustainable agricultural development.
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Abbreviations

The following abbreviations are used in this manuscript:

AFSC  Agri-Food Supply Chains

TFP Total Factor Productivity

AHP Analytical Hierarchy Process

KPIs Key Performance Indicators

DMU  Decision-Making Unit

RCAD Regional Commission for Agricultural Development
TND Tunisian dinars

CI Consistency Index
CR Consistency Ratio
Appendix A
Appendix A.1
Table Al. Sample Pairwise Comparison Matrix for Main Criteria.
- Specificities and Availability and Quality
Criteria Objectives of Data
Specificities and Objectives 1 1/3
Availability and Quality 3 1

of Data

Normalized Weights:
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Criteria Normalized Weight
Specificities and Objectives 0.25
Availability and Quality of Data 0.75

Note: This table illustrates the format and typical values of a main criteria matrix used in the AHP. Full pair-
wise matrices for sub-criteria and alternatives are available in the Supporting Dataset—Expert Judgments and

Raw KPIs.
Appendix A.2
Table A2. Consistency Ratios (CRs) for Each Matrix.
Matrix CR Acceptable (<0.10)
Main Criteria 0.06 Yes
Availability and Quality of Data 0.04 Yes
Specificities and Objectives 0.03 Yes
Number of Units 0.05 Yes
Type of Data 0.02 Yes
Available Variables 0.07 Yes
Communication 0.05 Yes
Multi-output 0.03 Yes

Note: Each matrix corresponds to a main or sub-criterion. All CR values are below 0.10, confirming that expert
judgments are consistent and reliable for deriving AHP weights.

References

1.

10.

11.

12.

13.

14.

15.

Boerger, V.; Bojic, D.; Bosc, P.,; Clark, M.; Dale, D.; England, M.; Hoogeveen, ].; Koo-Oshima, S.; Moreno, PM.; Muchoney, D.; et al.
The State of the World’s Land and Water Resources for Food and Agriculture—Systems at Breaking Point; Synthesis Report; Food and
Agriculture Organization: Rome, Italy, 2021. [CrossRef]

Pretty, J.; Benton, T.G.; Bharucha, Z.P; Dicks, L.V,; Flora, C.B.; Godfray, H.C.].; Goulson, D.; Hartley, S.; Lampkin, N.; Morris, C.;
et al. Global assessment of agricultural system redesign for sustainable intensification. Nat. Sustain. 2018, 1, 441-446. [CrossRef]
Sachs, J.D.; Schmidt-Traub, G.; Mazzucato, M.; Messner, D.; Nakicenovic, N.; Rockstrom, J. Six transformations to achieve the
sustainable development goals. Nat. Sustain. 2019, 2, 805-814. [CrossRef]

Sickles, R.C.; Zelenyuk, V. Measurement of Productivity and Efficiency; Cambridge University Press: Cambridge, UK, 2019.

Coelli, T.J.; Rao, D.P. Total factor productivity growth in agriculture: A Malmquist index analysis of 93 countries, 1980-2000.
Agric. Econ. 2005, 32, 115-134. [CrossRef]

Latruffe, L. Competitiveness, productivity and efficiency in the agricultural and agri-food sectors. In Handbook of Agricultural
Economics, 2nd ed.; Organisation for Economic Co-operation and Development: Paris, France, 2010; Volume 3, pp. 154-196.
[CrossRef]

Chavas, J.P; Chambers, R.G.; Pope, R.D. Production economics and farm management: A century of contributions. Am. J. Agric.
Econ. 2010, 92, 356-375. [CrossRef]

Afzal, H.; Hassan, S.; Bashir, M.K.; Ali, A. Estimation of total factor productivity growth of agriculture sector in Pakistan: Growth,
yield and economic analysis of dry-seeded basmati rice. Sarhad J. Agric. 2021, 37, 1298-1305. [CrossRef]

Meja, M.F;; Alemu, B.A.; Shete, M. Total factor productivity of major crops in Southern Ethiopia: A disaggregated analysis of the
growth components. Sustainability 2021, 13, 3388. [CrossRef]

Liu, J.; Dong, C.; Liu, S.; Rahman, S.; Sriboonchitta, S. Sources of total-factor productivity and efficiency changes in China’s
agriculture. Agriculture 2020, 10, 279. [CrossRef]

Wang, X.; Yang, C.; Qiao, C. Agricultural service trade and green development: A perspective based on China’s agricultural total
factor productivity. Sustainability 2024, 16, 7963. [CrossRef]

Zhou, R.; Zhang, Y. Measurement of urban green total factor productivity and analysis of its temporal and spatial evolution in
China. Sustainability 2023, 15, 9435. [CrossRef]

Yang, L.; Guan, Z.; Chen, S.; He, Z. Re-measurement and influencing factors of agricultural eco-efficiency under the ‘dual carbon’
target in China. Heliyon 2024, 10, e24944. [CrossRef]

Luan, X.; Yasmeen, R.; Shah, W.U.H. Assessing energy efficiency, regional disparities in production technology, and factors
influencing total factor energy productivity change in the agricultural sector of China. Heliyon 2024, 10, €35043. [CrossRef]
Fuglie, K. Accounting for growth in global agriculture. Bio-Based Appl. Econ. 2015, 4, 201-234. [CrossRef]


https://doi.org/10.4060/cb7654en
https://doi.org/10.1038/s41893-018-0114-0
https://doi.org/10.1038/s41893-019-0352-9
https://doi.org/10.1111/j.0169-5150.2004.00018.x
https://doi.org/10.1787/5km91nkdt6d6-en
https://doi.org/10.1093/ajae/aaq004
https://doi.org/10.17582/journal.sja/2021/37.4.1298.1305
https://doi.org/10.3390/su13063388
https://doi.org/10.3390/agriculture10070279
https://doi.org/10.3390/su16187963
https://doi.org/10.3390/su15129435
https://doi.org/10.1016/j.heliyon.2024.e24944
https://doi.org/10.1016/j.heliyon.2024.e35043
https://doi.org/10.13128/BAE-17151

Agriculture 2025, 15, 2313 22 of 23

16.

17.

18.

19.

20.
21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.
39.
40.
41.

42.

43.

Avila, A.ED.; Evenson, R.E. Total factor productivity growth in agriculture: The role of technological capital. In Handbook of
Agricultural Economics, 2nd ed.; Organisation for Economic Co-operation and Development: Paris, France, 2010; Volume 4,
pp. 3769-3822. [CrossRef]

Kamarudin, O.; Amir Hussin, B. The total factor productivity in strategic food crops industry of Malaysia. Asian J. Agric. Rural
Dev. 2015, 5, 124-136. [CrossRef]

Chen, Y.; Miao, ].; Zhu, Z. Measuring green total factor productivity of China’s agricultural sector: A three-stage SBM-DEA model
with non-point source pollution and CO2 emissions. J. Clean. Prod. 2021, 318, 128543. [CrossRef]

Saaty, T.L. The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation; McGraw-Hill International: London,
UK, 1980.

Saaty, T.L. Decision making with the analytic hierarchy process. Int. J. Serv. Sci. 2008, 1, 83-98. [CrossRef]

Ishizaka, A.; Labib, A. Review of the main developments in the analytic hierarchy process. Expert Syst. Appl. 2011, 38, 14336-14345.
[CrossRef]

Diewert, W.E. The measurement of aggregate total factor productivity. In Handbook of Econometrics; Elsevier: Amsterdam, The
Netherlands, 2008; Volume 6.

Organisation for Economic Co-operation and Development (OECD). TFP Growth Accounting Framework and Guidelines; Technical
Report; Organisation for Economic Co-operation and Development (OECD): Paris, France, 2018.

Bureau, J.C.; Antén, J. OECD Food, Agriculture and Fisheries Papers: Agricultural Total Factor Productivity and the Environment;
Organisation for Economic Co-operation and Development (OECD): Paris, France, 2022. Available online: https://coilink.org/20
.500.12592 /xjw647 (accessed on 16 September 2025).

Stepenuck, K.E; Green, L. Individual- and Community-Level Impacts of Volunteer Environmental Monitoring: A Synthesis of
Peer-Reviewed Literature. Ecol. Soc. 2015, 20, 19. [CrossRef]

Coelli, T.J.; Rao, D.S.P.; O’'Donnell, C.].; Battese, G.E. An Introduction to Efficiency and Productivity Analysis, 2nd ed.; Springer: New
York, NY, USA, 2005. [CrossRef]

Organisation for Economic Co-Operation and Development (OECD). Measuring Productivity, Measurement of Aggregate and
Industry-Level Productivity Growth; OECD: Paris, France, 2001. [CrossRef]

Mekouar, M.A. Food and Agriculture Organization of the United Nations (FAO). Yearb. Int. Environ. Law 2023, 29, 448-468.
[CrossRef]

Kuosmanen, T.; Post, T.; Sipildinen, T. Shadow price approach to total factor productivity measurement: With an application to
Finnish grass-silage production. J. Prod. Anal. 2004, 22, 95-121. [CrossRef]

Solow, R.M. Technical change and the aggregate production function. Rev. Econ. Stat. 1957, 39, 312-320. [CrossRef]

Divisia, F. L'indice monétaire et la théorie de la monnaie. Rev. Econ. Polit. 1925, 39, 842-1151.

Tornqvist-Theil, L. The Bank of Finland’s Consumption Price Index. Bank. Finl. Mon. Bull. 1936, 10, 27.

O’Donnell, C.J. Measuring and decomposing agricultural productivity and profitability change. Aust. J. Agric. Resour. Econ. 2010,
54,527-560. [CrossRef]

Spolador, H.ES.; Danelon, A.F. New evidence of the driving forces behind Brazil’s agricultural TFP growth: A stochastic frontier
analysis with climatic variables and land suitability index. Aust. J. Agric. Resour. Econ. 2024, 68, 366-385. [CrossRef]

Wimmer, S.; Dakpo, K.H. Components of agricultural productivity change: Replication of US evidence and extension to the EU.
Appl. Econ. Perspect. Policy 2023, 45, 1332-1355. [CrossRef]

Fekih, A.; Chabouh, S.; Sidhom, L.; Mami, A.K. An overview of total factor productivity approaches for sustainable smallholders
in agri-food supply chains. In Proceedings of the IEEE 16th International Conference on Logistics and Supply Chain Management—
LOGISTIQUA 2025, Casablanca, Morocco, 28-30 May 2025. [CrossRef]

Hulten, C.R. Total factor productivity: A short biography. In New Developments in Productivity Analysis; University of Chicago
Press: Chicago, IL, USA, 2001; pp. 1-54. Available online: http:/ /www.nber.org/system/files/chapters/c10122/c10122.pdf
(accessed on 15 September 2025).

Diewert, W.E. Fisher ideal output, input, and productivity indexes revisited. J. Prod. Anal. 1992, 3, 211-248. [CrossRef]

Lovell, C.K. The decomposition of Malmquist productivity indexes. J. Prod. Anal. 2003, 20, 437-458. [CrossRef]

Caves, D.W,; Christensen, L.R.; Diewert, W.E. The economic theory of index numbers and the measurement of input, output, and
productivity. Econometrica 1982, 50, 1393-1414. [CrossRef]

FAO. Profil Pays: Tunisie—Organisation des Nations Unies Pour 1’Alimentation et I’Agriculture. Available online: https:
//www.fao.org/tunisie/en (accessed on 4 April 2025).

Chaboubh, S.; Sidhom, L.; Zammiti, A.; Mami, A. Assessing Agri-Food Supply Chain Multi-Capital Sustainability Using Simple
Multi-Attribute Rating Technique: The Policy Maker Case Study. In Proceedings of the 10th International Food Operations &
Processing Simulation Workshop, Tenerife, Spain, 18-20 September 2024. [CrossRef]

Amamou, A.; Chabouh, S.; Sidhom, L.; Zouari, A.; Mami, A. Agri-Food Supply Chain Sustainability Indicators from a Multi-
Capital Perspective: A Systematic Review. Sustainability 2025, 17, 4174. [CrossRef]


https://doi.org/10.1016/S1574-0072(09)04072-9
https://doi.org/10.22004/ag.econ.244280
https://doi.org/10.1016/j.jclepro.2021.128543
https://doi.org/10.1504/IJSSCI.2008.017590
https://doi.org/10.1016/j.eswa.2011.04.143
https://coilink.org/20.500.12592/xjw647
https://coilink.org/20.500.12592/xjw647
https://doi.org/10.5751/ES-07329-200319
https://doi.org/10.1007/b136381
https://doi.org/10.1787/9789264194519-en
https://doi.org/10.1093/yiel/yvz057
https://doi.org/10.1023/B:PROD.0000034693.38576.94
https://doi.org/10.2307/1926047
https://doi.org/10.1111/j.1467-8489.2010.00512.x
https://doi.org/10.1111/1467-8489.12558
https://doi.org/10.1002/aepp.13377
https://doi.org/10.1109/LOGISTIQUA66323.2025.11122737
http://www.nber.org/system/files/chapters/c10122/c10122.pdf
https://doi.org/10.1007/BF00158354
https://doi.org/10.1023/A:1027312102834
https://doi.org/10.2307/1913388
https://www.fao.org/tunisie/en
https://www.fao.org/tunisie/en
https://doi.org/10.46354/i3m.2024.foodops.015
https://doi.org/10.3390/su17094174

Agriculture 2025, 15, 2313 23 of 23

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

Fekih, A.; Chabouh, S.; Sidhom, L.; Zouari, A.; Mami, A. A Multi-Expert FQFD and TRIZ Framework for Prioritizing Multi-Capital
Sustainability KPIs: A Smallholder Case Study. Sustainability 2025, 17, 8277. [CrossRef]

Molden, D.; Oweis, T.; Steduto, P,; Bindraban, P.; Hanjra, M. A ; Kijne, J. Improving agricultural water productivity: Between
optimism and caution. Agric. Water Manag. 2010, 97, 528-535. [CrossRef]

Governorate of Nabeul. Stimulus Program for Boosting the Investment and Modernization of Farms. Available online:
https:/ /www.nabeul.gov.tn/en/stimulus-program-for-boosting-the-investment-and-the-modernization-of-farms/ (accessed on
1 September 2025).

International Labour Organization. Rural Employment and Decent Work; ILO: Geneva, Switzerland, 2010; Available on-
line: http://openknowledge.fao.org/server/api/core/bitstreams/72070c29-47d6-47ef-8059-e78168c2fb69 / content (accessed on
22 August 2025).

International Energy Agency. Energy Consumption in African Agriculture [IEA Statistics]; IEA: Paris, France, 2020.

Agence Nationale pour la Maitrise de I'Energie. Energy Efficiency in Agriculture [Rapport ANME]; ANME: Tunis, Tunisia, 2019.
Abokyi, E.; Strijker, D.; Asiedu, K.E; Daams, M.N. The Impact of Output Price Support on Smallholder Farmers’ Income: Evidence
from Maize Farmers in Ghana. Heliyon 2020, 6, €04827. [CrossRef] [PubMed]

Ministere de 1’Agriculture et des Ressources Hydrauliques. Agricultural Extension Programs [Policy Brief MAER]; Ministere de
I’Agriculture et des Ressources Hydrauliques: Tunis, Tunisia, 2021.

International Labor Organization. Labor Market Trends in Tunisia; ILO Reports; ILO: Geneva, Switzerland, 2020.

Institut National de la Statistique. Annual Labor Survey; INS Publications; INS: Montrouge, France, 2021.

African Development Bank. Employment Trends in North Africa; AfDB Publications; African Development Bank: Abidjan, Cote
d’Ivoire, 2019.

Ministere de I'Emploi et de la Formation Professionnelle. Employment in the Agricultural Sector; MTESS Annual Report; Ministére
de I'Emploi et de la Formation Professionnelle: Tunis, Tunisia, 2020.

Direction Générale des Aménagements et des Constructions Hydrauliques (DGACH). Land Use Statistics; Ministry of Agriculture:
Tunis, Tunisia, 2019.

Observatoire National de 1’Agriculture. Agricultural Productivity Indicators; ONAGRI Bulletin; Observatoire National de
I’Agriculture: Tunis, Tunisia, 2020.

Global Water Partnership-Mediterranean. Water Stress Indicators in North Africa [GWP Technical Report]; Global Water Partnership-
Mediterranean: Stockholm, Sweden, 2021.

Ball, V.E. Output, input, and productivity measurement in US agriculture 1948-1979. Am. ]. Agric. Econ. 1985, 67, 475-486.
[CrossRef]

OECD. Environmental Performance of Agriculture in OECD Countries: Key Trends and Insights; OECD Publishing: Paris, France, 2025.
[CrossRef]

Eliseu, E.E.; Lima, T.M.; Gaspar, P.D. A KPI-Based Framework for Evaluating Sustainable Agricultural Practices in Southern
Angola. Sustainability 2025, 17, 7019. [CrossRef]

Alonso-Martinez, D.; Jiménez-Parra, B.; Cabeza-Garcia, L. Theoretical Framework to Foster and Assess Sustainable Agriculture
Practices: Drivers and Key Performance Indicators. Environ. Sustain. Indic. 2024, 23, 100434. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.


https://doi.org/10.3390/su17188277
https://doi.org/10.1016/j.agwat.2009.03.023
https://www.nabeul.gov.tn/en/stimulus-program-for-boosting-the-investment-and-the-modernization-of-farms/
http://openknowledge.fao.org/server/api/core/bitstreams/72070c29-47d6-47ef-8059-e78168c2fb69/content
https://doi.org/10.1016/j.heliyon.2020.e05013
https://www.ncbi.nlm.nih.gov/pubmed/33005809
https://doi.org/10.2307/1241066
https://doi.org/10.1787/2679ba38-en
https://doi.org/10.3390/su17157019
https://doi.org/10.1016/j.indic.2024.100434

	Introduction 
	Materials and Methods 
	Selection Criteria 
	Preselection of Alternatives 
	AHP for TFP Selection 
	Computation of TFP Methods 

	Case Study and Data 
	Case Study Description 
	Provided Dataset 
	Classification of KPIs 
	Mean Shadow Price-Based Valuation of KPIs 

	Results 
	AHP Results and Elasticity Analysis 
	TFP Computation Results and Sensitivity Analysis 

	Discussion 
	AHP Insights 
	Discussion of TFP Results 
	Contextual Interpretation of TFP Decline 
	Implications, Validity, and Limitations 
	Theoretical and Practical Implications 
	Validity and Limitations 
	Future Research 


	Conclusions and Perspectives 
	Appendix A
	 
	 

	References

